\(\int \tan ^4(e+f x) (1+\tan (e+f x))^{3/2} \, dx\) [395]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 227 \[ \int \tan ^4(e+f x) (1+\tan (e+f x))^{3/2} \, dx=-\frac {\sqrt {-1+\sqrt {2}} \arctan \left (\frac {3-2 \sqrt {2}+\left (1-\sqrt {2}\right ) \tan (e+f x)}{\sqrt {2 \left (-7+5 \sqrt {2}\right )} \sqrt {1+\tan (e+f x)}}\right )}{f}-\frac {\sqrt {1+\sqrt {2}} \text {arctanh}\left (\frac {3+2 \sqrt {2}+\left (1+\sqrt {2}\right ) \tan (e+f x)}{\sqrt {2 \left (7+5 \sqrt {2}\right )} \sqrt {1+\tan (e+f x)}}\right )}{f}+\frac {2 \sqrt {1+\tan (e+f x)}}{f}-\frac {22 (1+\tan (e+f x))^{5/2}}{63 f}-\frac {8 \tan (e+f x) (1+\tan (e+f x))^{5/2}}{63 f}+\frac {2 \tan ^2(e+f x) (1+\tan (e+f x))^{5/2}}{9 f} \]

[Out]

-arctan((3-2*2^(1/2)+(1-2^(1/2))*tan(f*x+e))/(-14+10*2^(1/2))^(1/2)/(1+tan(f*x+e))^(1/2))*(2^(1/2)-1)^(1/2)/f-
arctanh((3+2*2^(1/2)+(1+2^(1/2))*tan(f*x+e))/(14+10*2^(1/2))^(1/2)/(1+tan(f*x+e))^(1/2))*(1+2^(1/2))^(1/2)/f+2
*(1+tan(f*x+e))^(1/2)/f-22/63*(1+tan(f*x+e))^(5/2)/f-8/63*tan(f*x+e)*(1+tan(f*x+e))^(5/2)/f+2/9*tan(f*x+e)^2*(
1+tan(f*x+e))^(5/2)/f

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3647, 3728, 3712, 3563, 12, 3617, 3616, 209, 213} \[ \int \tan ^4(e+f x) (1+\tan (e+f x))^{3/2} \, dx=-\frac {\sqrt {\sqrt {2}-1} \arctan \left (\frac {\left (1-\sqrt {2}\right ) \tan (e+f x)-2 \sqrt {2}+3}{\sqrt {2 \left (5 \sqrt {2}-7\right )} \sqrt {\tan (e+f x)+1}}\right )}{f}-\frac {\sqrt {1+\sqrt {2}} \text {arctanh}\left (\frac {\left (1+\sqrt {2}\right ) \tan (e+f x)+2 \sqrt {2}+3}{\sqrt {2 \left (7+5 \sqrt {2}\right )} \sqrt {\tan (e+f x)+1}}\right )}{f}+\frac {2 \tan ^2(e+f x) (\tan (e+f x)+1)^{5/2}}{9 f}-\frac {8 \tan (e+f x) (\tan (e+f x)+1)^{5/2}}{63 f}-\frac {22 (\tan (e+f x)+1)^{5/2}}{63 f}+\frac {2 \sqrt {\tan (e+f x)+1}}{f} \]

[In]

Int[Tan[e + f*x]^4*(1 + Tan[e + f*x])^(3/2),x]

[Out]

-((Sqrt[-1 + Sqrt[2]]*ArcTan[(3 - 2*Sqrt[2] + (1 - Sqrt[2])*Tan[e + f*x])/(Sqrt[2*(-7 + 5*Sqrt[2])]*Sqrt[1 + T
an[e + f*x]])])/f) - (Sqrt[1 + Sqrt[2]]*ArcTanh[(3 + 2*Sqrt[2] + (1 + Sqrt[2])*Tan[e + f*x])/(Sqrt[2*(7 + 5*Sq
rt[2])]*Sqrt[1 + Tan[e + f*x]])])/f + (2*Sqrt[1 + Tan[e + f*x]])/f - (22*(1 + Tan[e + f*x])^(5/2))/(63*f) - (8
*Tan[e + f*x]*(1 + Tan[e + f*x])^(5/2))/(63*f) + (2*Tan[e + f*x]^2*(1 + Tan[e + f*x])^(5/2))/(9*f)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 3563

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((a + b*Tan[c + d*x])^(n - 1)/(d*(n - 1))
), x] + Int[(a^2 - b^2 + 2*a*b*Tan[c + d*x])*(a + b*Tan[c + d*x])^(n - 2), x] /; FreeQ[{a, b, c, d}, x] && NeQ
[a^2 + b^2, 0] && GtQ[n, 1]

Rule 3616

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2*(
d^2/f), Subst[Int[1/(2*b*c*d - 4*a*d^2 + x^2), x], x, (b*c - 2*a*d - b*d*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]
]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[2
*a*c*d - b*(c^2 - d^2), 0]

Rule 3617

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> With[{q =
 Rt[a^2 + b^2, 2]}, Dist[1/(2*q), Int[(a*c + b*d + c*q + (b*c - a*d + d*q)*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*
x]], x], x] - Dist[1/(2*q), Int[(a*c + b*d - c*q + (b*c - a*d - d*q)*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]], x
], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && NeQ[2
*a*c*d - b*(c^2 - d^2), 0] && (PerfectSquareQ[a^2 + b^2] || RationalQ[a, b, c, d])

Rule 3647

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b^2*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + n - 1))), x] + Dist[1/(d*(m + n -
1)), Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^n*Simp[a^3*d*(m + n - 1) - b^2*(b*c*(m - 2) + a*d*(
1 + n)) + b*d*(m + n - 1)*(3*a^2 - b^2)*Tan[e + f*x] - b^2*(b*c*(m - 2) - a*d*(3*m + 2*n - 4))*Tan[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& IntegerQ[2*m] && GtQ[m, 2] && (GeQ[n, -1] || IntegerQ[m]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] || (EqQ[c, 0]
&& NeQ[a, 0])))

Rule 3712

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp
[C*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Dist[A - C, Int[(a + b*Tan[e + f*x])^m, x], x] /; FreeQ[
{a, b, e, f, A, C, m}, x] && NeQ[A*b^2 + a^2*C, 0] &&  !LeQ[m, -1]

Rule 3728

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*
tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*(a + b*Tan[e + f*x])^m*((c + d
*Tan[e + f*x])^(n + 1)/(d*f*(m + n + 1))), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c +
d*Tan[e + f*x])^n*Simp[a*A*d*(m + n + 1) - C*(b*c*m + a*d*(n + 1)) + d*(A*b + a*B - b*C)*(m + n + 1)*Tan[e + f
*x] - (C*m*(b*c - a*d) - b*B*d*(m + n + 1))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !Intege
rQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rubi steps \begin{align*} \text {integral}& = \frac {2 \tan ^2(e+f x) (1+\tan (e+f x))^{5/2}}{9 f}+\frac {2}{9} \int \tan (e+f x) (1+\tan (e+f x))^{3/2} \left (-2-\frac {9}{2} \tan (e+f x)-2 \tan ^2(e+f x)\right ) \, dx \\ & = -\frac {8 \tan (e+f x) (1+\tan (e+f x))^{5/2}}{63 f}+\frac {2 \tan ^2(e+f x) (1+\tan (e+f x))^{5/2}}{9 f}+\frac {4}{63} \int (1+\tan (e+f x))^{3/2} \left (2-\frac {55}{4} \tan ^2(e+f x)\right ) \, dx \\ & = -\frac {22 (1+\tan (e+f x))^{5/2}}{63 f}-\frac {8 \tan (e+f x) (1+\tan (e+f x))^{5/2}}{63 f}+\frac {2 \tan ^2(e+f x) (1+\tan (e+f x))^{5/2}}{9 f}+\int (1+\tan (e+f x))^{3/2} \, dx \\ & = \frac {2 \sqrt {1+\tan (e+f x)}}{f}-\frac {22 (1+\tan (e+f x))^{5/2}}{63 f}-\frac {8 \tan (e+f x) (1+\tan (e+f x))^{5/2}}{63 f}+\frac {2 \tan ^2(e+f x) (1+\tan (e+f x))^{5/2}}{9 f}+\int \frac {2 \tan (e+f x)}{\sqrt {1+\tan (e+f x)}} \, dx \\ & = \frac {2 \sqrt {1+\tan (e+f x)}}{f}-\frac {22 (1+\tan (e+f x))^{5/2}}{63 f}-\frac {8 \tan (e+f x) (1+\tan (e+f x))^{5/2}}{63 f}+\frac {2 \tan ^2(e+f x) (1+\tan (e+f x))^{5/2}}{9 f}+2 \int \frac {\tan (e+f x)}{\sqrt {1+\tan (e+f x)}} \, dx \\ & = \frac {2 \sqrt {1+\tan (e+f x)}}{f}-\frac {22 (1+\tan (e+f x))^{5/2}}{63 f}-\frac {8 \tan (e+f x) (1+\tan (e+f x))^{5/2}}{63 f}+\frac {2 \tan ^2(e+f x) (1+\tan (e+f x))^{5/2}}{9 f}-\frac {\int \frac {1+\left (-1-\sqrt {2}\right ) \tan (e+f x)}{\sqrt {1+\tan (e+f x)}} \, dx}{\sqrt {2}}+\frac {\int \frac {1+\left (-1+\sqrt {2}\right ) \tan (e+f x)}{\sqrt {1+\tan (e+f x)}} \, dx}{\sqrt {2}} \\ & = \frac {2 \sqrt {1+\tan (e+f x)}}{f}-\frac {22 (1+\tan (e+f x))^{5/2}}{63 f}-\frac {8 \tan (e+f x) (1+\tan (e+f x))^{5/2}}{63 f}+\frac {2 \tan ^2(e+f x) (1+\tan (e+f x))^{5/2}}{9 f}+\frac {\left (4-3 \sqrt {2}\right ) \text {Subst}\left (\int \frac {1}{2 \left (-1+\sqrt {2}\right )-4 \left (-1+\sqrt {2}\right )^2+x^2} \, dx,x,\frac {1-2 \left (-1+\sqrt {2}\right )-\left (-1+\sqrt {2}\right ) \tan (e+f x)}{\sqrt {1+\tan (e+f x)}}\right )}{f}+\frac {\left (4+3 \sqrt {2}\right ) \text {Subst}\left (\int \frac {1}{2 \left (-1-\sqrt {2}\right )-4 \left (-1-\sqrt {2}\right )^2+x^2} \, dx,x,\frac {1-2 \left (-1-\sqrt {2}\right )-\left (-1-\sqrt {2}\right ) \tan (e+f x)}{\sqrt {1+\tan (e+f x)}}\right )}{f} \\ & = -\frac {\sqrt {-1+\sqrt {2}} \arctan \left (\frac {3-2 \sqrt {2}+\left (1-\sqrt {2}\right ) \tan (e+f x)}{\sqrt {2 \left (-7+5 \sqrt {2}\right )} \sqrt {1+\tan (e+f x)}}\right )}{f}-\frac {\sqrt {1+\sqrt {2}} \text {arctanh}\left (\frac {3+2 \sqrt {2}+\left (1+\sqrt {2}\right ) \tan (e+f x)}{\sqrt {2 \left (7+5 \sqrt {2}\right )} \sqrt {1+\tan (e+f x)}}\right )}{f}+\frac {2 \sqrt {1+\tan (e+f x)}}{f}-\frac {22 (1+\tan (e+f x))^{5/2}}{63 f}-\frac {8 \tan (e+f x) (1+\tan (e+f x))^{5/2}}{63 f}+\frac {2 \tan ^2(e+f x) (1+\tan (e+f x))^{5/2}}{9 f} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.15 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.68 \[ \int \tan ^4(e+f x) (1+\tan (e+f x))^{3/2} \, dx=\frac {2 \cos ^2(e+f x) \left (-63 \left (\frac {\text {arctanh}\left (\frac {\sqrt {1+\tan (e+f x)}}{\sqrt {1-i}}\right )}{\sqrt {1-i}}+\frac {\text {arctanh}\left (\frac {\sqrt {1+\tan (e+f x)}}{\sqrt {1+i}}\right )}{\sqrt {1+i}}\right ) (1+\tan (e+f x))^2+(1+\tan (e+f x))^{5/2} \left (71+7 \sec ^4(e+f x)-36 \tan (e+f x)+2 \sec ^2(e+f x) (-13+5 \tan (e+f x))\right )\right )}{63 f (\cos (e+f x)+\sin (e+f x))^2} \]

[In]

Integrate[Tan[e + f*x]^4*(1 + Tan[e + f*x])^(3/2),x]

[Out]

(2*Cos[e + f*x]^2*(-63*(ArcTanh[Sqrt[1 + Tan[e + f*x]]/Sqrt[1 - I]]/Sqrt[1 - I] + ArcTanh[Sqrt[1 + Tan[e + f*x
]]/Sqrt[1 + I]]/Sqrt[1 + I])*(1 + Tan[e + f*x])^2 + (1 + Tan[e + f*x])^(5/2)*(71 + 7*Sec[e + f*x]^4 - 36*Tan[e
 + f*x] + 2*Sec[e + f*x]^2*(-13 + 5*Tan[e + f*x]))))/(63*f*(Cos[e + f*x] + Sin[e + f*x])^2)

Maple [A] (verified)

Time = 0.80 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.08

method result size
derivativedivides \(\frac {\frac {2 \left (1+\tan \left (f x +e \right )\right )^{\frac {9}{2}}}{9}-\frac {4 \left (1+\tan \left (f x +e \right )\right )^{\frac {7}{2}}}{7}+2 \sqrt {1+\tan \left (f x +e \right )}-\frac {\sqrt {2}\, \left (-\frac {\sqrt {2+2 \sqrt {2}}\, \ln \left (1+\sqrt {2}-\sqrt {2+2 \sqrt {2}}\, \sqrt {1+\tan \left (f x +e \right )}+\tan \left (f x +e \right )\right )}{2}+\frac {2 \left (1-\sqrt {2}\right ) \arctan \left (\frac {2 \sqrt {1+\tan \left (f x +e \right )}-\sqrt {2+2 \sqrt {2}}}{\sqrt {-2+2 \sqrt {2}}}\right )}{\sqrt {-2+2 \sqrt {2}}}\right )}{2}-\frac {\sqrt {2}\, \left (\frac {\sqrt {2+2 \sqrt {2}}\, \ln \left (1+\sqrt {2}+\sqrt {2+2 \sqrt {2}}\, \sqrt {1+\tan \left (f x +e \right )}+\tan \left (f x +e \right )\right )}{2}+\frac {2 \left (1-\sqrt {2}\right ) \arctan \left (\frac {\sqrt {2+2 \sqrt {2}}+2 \sqrt {1+\tan \left (f x +e \right )}}{\sqrt {-2+2 \sqrt {2}}}\right )}{\sqrt {-2+2 \sqrt {2}}}\right )}{2}}{f}\) \(245\)
default \(\frac {\frac {2 \left (1+\tan \left (f x +e \right )\right )^{\frac {9}{2}}}{9}-\frac {4 \left (1+\tan \left (f x +e \right )\right )^{\frac {7}{2}}}{7}+2 \sqrt {1+\tan \left (f x +e \right )}-\frac {\sqrt {2}\, \left (-\frac {\sqrt {2+2 \sqrt {2}}\, \ln \left (1+\sqrt {2}-\sqrt {2+2 \sqrt {2}}\, \sqrt {1+\tan \left (f x +e \right )}+\tan \left (f x +e \right )\right )}{2}+\frac {2 \left (1-\sqrt {2}\right ) \arctan \left (\frac {2 \sqrt {1+\tan \left (f x +e \right )}-\sqrt {2+2 \sqrt {2}}}{\sqrt {-2+2 \sqrt {2}}}\right )}{\sqrt {-2+2 \sqrt {2}}}\right )}{2}-\frac {\sqrt {2}\, \left (\frac {\sqrt {2+2 \sqrt {2}}\, \ln \left (1+\sqrt {2}+\sqrt {2+2 \sqrt {2}}\, \sqrt {1+\tan \left (f x +e \right )}+\tan \left (f x +e \right )\right )}{2}+\frac {2 \left (1-\sqrt {2}\right ) \arctan \left (\frac {\sqrt {2+2 \sqrt {2}}+2 \sqrt {1+\tan \left (f x +e \right )}}{\sqrt {-2+2 \sqrt {2}}}\right )}{\sqrt {-2+2 \sqrt {2}}}\right )}{2}}{f}\) \(245\)

[In]

int(tan(f*x+e)^4*(1+tan(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/f*(2/9*(1+tan(f*x+e))^(9/2)-4/7*(1+tan(f*x+e))^(7/2)+2*(1+tan(f*x+e))^(1/2)-1/2*2^(1/2)*(-1/2*(2+2*2^(1/2))^
(1/2)*ln(1+2^(1/2)-(2+2*2^(1/2))^(1/2)*(1+tan(f*x+e))^(1/2)+tan(f*x+e))+2*(1-2^(1/2))/(-2+2*2^(1/2))^(1/2)*arc
tan((2*(1+tan(f*x+e))^(1/2)-(2+2*2^(1/2))^(1/2))/(-2+2*2^(1/2))^(1/2)))-1/2*2^(1/2)*(1/2*(2+2*2^(1/2))^(1/2)*l
n(1+2^(1/2)+(2+2*2^(1/2))^(1/2)*(1+tan(f*x+e))^(1/2)+tan(f*x+e))+2*(1-2^(1/2))/(-2+2*2^(1/2))^(1/2)*arctan(((2
+2*2^(1/2))^(1/2)+2*(1+tan(f*x+e))^(1/2))/(-2+2*2^(1/2))^(1/2))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 368 vs. \(2 (180) = 360\).

Time = 0.26 (sec) , antiderivative size = 368, normalized size of antiderivative = 1.62 \[ \int \tan ^4(e+f x) (1+\tan (e+f x))^{3/2} \, dx=\frac {63 \, \sqrt {2} f \sqrt {\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} + 1}{f^{2}}} \log \left (\sqrt {2} {\left (f^{3} \sqrt {-\frac {1}{f^{4}}} - f\right )} \sqrt {\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} + 1}{f^{2}}} + 2 \, \sqrt {\tan \left (f x + e\right ) + 1}\right ) - 63 \, \sqrt {2} f \sqrt {\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} + 1}{f^{2}}} \log \left (-\sqrt {2} {\left (f^{3} \sqrt {-\frac {1}{f^{4}}} - f\right )} \sqrt {\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} + 1}{f^{2}}} + 2 \, \sqrt {\tan \left (f x + e\right ) + 1}\right ) - 63 \, \sqrt {2} f \sqrt {-\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} - 1}{f^{2}}} \log \left (\sqrt {2} {\left (f^{3} \sqrt {-\frac {1}{f^{4}}} + f\right )} \sqrt {-\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} - 1}{f^{2}}} + 2 \, \sqrt {\tan \left (f x + e\right ) + 1}\right ) + 63 \, \sqrt {2} f \sqrt {-\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} - 1}{f^{2}}} \log \left (-\sqrt {2} {\left (f^{3} \sqrt {-\frac {1}{f^{4}}} + f\right )} \sqrt {-\frac {f^{2} \sqrt {-\frac {1}{f^{4}}} - 1}{f^{2}}} + 2 \, \sqrt {\tan \left (f x + e\right ) + 1}\right ) + 4 \, {\left (7 \, \tan \left (f x + e\right )^{4} + 10 \, \tan \left (f x + e\right )^{3} - 12 \, \tan \left (f x + e\right )^{2} - 26 \, \tan \left (f x + e\right ) + 52\right )} \sqrt {\tan \left (f x + e\right ) + 1}}{126 \, f} \]

[In]

integrate(tan(f*x+e)^4*(1+tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

1/126*(63*sqrt(2)*f*sqrt((f^2*sqrt(-1/f^4) + 1)/f^2)*log(sqrt(2)*(f^3*sqrt(-1/f^4) - f)*sqrt((f^2*sqrt(-1/f^4)
 + 1)/f^2) + 2*sqrt(tan(f*x + e) + 1)) - 63*sqrt(2)*f*sqrt((f^2*sqrt(-1/f^4) + 1)/f^2)*log(-sqrt(2)*(f^3*sqrt(
-1/f^4) - f)*sqrt((f^2*sqrt(-1/f^4) + 1)/f^2) + 2*sqrt(tan(f*x + e) + 1)) - 63*sqrt(2)*f*sqrt(-(f^2*sqrt(-1/f^
4) - 1)/f^2)*log(sqrt(2)*(f^3*sqrt(-1/f^4) + f)*sqrt(-(f^2*sqrt(-1/f^4) - 1)/f^2) + 2*sqrt(tan(f*x + e) + 1))
+ 63*sqrt(2)*f*sqrt(-(f^2*sqrt(-1/f^4) - 1)/f^2)*log(-sqrt(2)*(f^3*sqrt(-1/f^4) + f)*sqrt(-(f^2*sqrt(-1/f^4) -
 1)/f^2) + 2*sqrt(tan(f*x + e) + 1)) + 4*(7*tan(f*x + e)^4 + 10*tan(f*x + e)^3 - 12*tan(f*x + e)^2 - 26*tan(f*
x + e) + 52)*sqrt(tan(f*x + e) + 1))/f

Sympy [F]

\[ \int \tan ^4(e+f x) (1+\tan (e+f x))^{3/2} \, dx=\int \left (\tan {\left (e + f x \right )} + 1\right )^{\frac {3}{2}} \tan ^{4}{\left (e + f x \right )}\, dx \]

[In]

integrate(tan(f*x+e)**4*(1+tan(f*x+e))**(3/2),x)

[Out]

Integral((tan(e + f*x) + 1)**(3/2)*tan(e + f*x)**4, x)

Maxima [F]

\[ \int \tan ^4(e+f x) (1+\tan (e+f x))^{3/2} \, dx=\int { {\left (\tan \left (f x + e\right ) + 1\right )}^{\frac {3}{2}} \tan \left (f x + e\right )^{4} \,d x } \]

[In]

integrate(tan(f*x+e)^4*(1+tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((tan(f*x + e) + 1)^(3/2)*tan(f*x + e)^4, x)

Giac [F(-1)]

Timed out. \[ \int \tan ^4(e+f x) (1+\tan (e+f x))^{3/2} \, dx=\text {Timed out} \]

[In]

integrate(tan(f*x+e)^4*(1+tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 7.18 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.52 \[ \int \tan ^4(e+f x) (1+\tan (e+f x))^{3/2} \, dx=\frac {2\,\sqrt {\mathrm {tan}\left (e+f\,x\right )+1}}{f}-\frac {4\,{\left (\mathrm {tan}\left (e+f\,x\right )+1\right )}^{7/2}}{7\,f}+\frac {2\,{\left (\mathrm {tan}\left (e+f\,x\right )+1\right )}^{9/2}}{9\,f}+\mathrm {atan}\left (f\,\sqrt {\frac {\frac {1}{2}-\frac {1}{2}{}\mathrm {i}}{f^2}}\,\sqrt {\mathrm {tan}\left (e+f\,x\right )+1}\,1{}\mathrm {i}\right )\,\sqrt {\frac {\frac {1}{2}-\frac {1}{2}{}\mathrm {i}}{f^2}}\,2{}\mathrm {i}+\mathrm {atan}\left (f\,\sqrt {\frac {\frac {1}{2}+\frac {1}{2}{}\mathrm {i}}{f^2}}\,\sqrt {\mathrm {tan}\left (e+f\,x\right )+1}\,1{}\mathrm {i}\right )\,\sqrt {\frac {\frac {1}{2}+\frac {1}{2}{}\mathrm {i}}{f^2}}\,2{}\mathrm {i} \]

[In]

int(tan(e + f*x)^4*(tan(e + f*x) + 1)^(3/2),x)

[Out]

(2*(tan(e + f*x) + 1)^(1/2))/f - (4*(tan(e + f*x) + 1)^(7/2))/(7*f) + (2*(tan(e + f*x) + 1)^(9/2))/(9*f) + ata
n(f*((1/2 - 1i/2)/f^2)^(1/2)*(tan(e + f*x) + 1)^(1/2)*1i)*((1/2 - 1i/2)/f^2)^(1/2)*2i + atan(f*((1/2 + 1i/2)/f
^2)^(1/2)*(tan(e + f*x) + 1)^(1/2)*1i)*((1/2 + 1i/2)/f^2)^(1/2)*2i